Trace Formulas and Inverse Spectral Theory for Jacobi Operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trace Formulas and Inverse Spectral Theory for Jacobi Operators

Based on high energy expansions and Herglotz properties of Green and Weyl m-functions we develop a self-contained theory of trace formulas for Jacobi operators. In addition, we consider connections with inverse spectral theory, in particular uniqueness results. As an application we work out a new approach to the inverse spectral problem of a class of reflectionless operators producing explicit ...

متن کامل

Trace Formulae and Inverse Spectral Theory for Schrödinger Operators

We extend the well-known trace formula for Hill's equation to general one-dimensional Schrodinger operators. The new function <J , which we introduce, is used to study absolutely continuous spectrum and inverse problems. In this note we will consider one-dimensional Schrodinger operators d2 (IS) H = -j-1 + V(x) onL2(R;dx)

متن کامل

Inverse spectral analysis for finite matrix-valued Jacobi operators

Consider the Jacobi operators J given by (J y)n = anyn+1+bnyn+a∗n−1yn−1, yn ∈ C (here y0 = yp+1 = 0), where bn = b ∗ n and an : det an 6= 0 are the sequences of m × m matrices, n = 1, .., p. We study two cases: (i) an = a∗n > 0; (ii) an is a lower triangular matrix with real positive entries on the diagonal (the matrix J is (2m+1)-band mp×mp matrix with positive entries on the first and the las...

متن کامل

Symplectic inverse spectral theory for pseudodifferential operators

We prove, under some generic assumptions, that the semiclassical spectrum modulo O(~) of a one dimensional pseudodifferential operator completely determines the symplectic geometry of the underlying classical system. In particular, the spectrum determines the hamiltonian dynamics of the principal symbol.

متن کامل

Trace formulas for stochastic evolution operators: Weak noise perturbation theory

Periodic orbit theory is an effective tool for the analysis of classical and quantum chaotic systems. In this paper we extend this approach to stochastic systems, in particular to mappings with additive noise. The theory is cast in the standard field theoretic formalism, and weak noise perturbation theory written in terms of Feynman diagrams. The result is a stochastic analog of the next-to-lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 1998

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s002200050419